

=|= Intensive Care Nursing Fourth Edition

A Framework for Practice Philip Woodrow

Intensive Care Nursing

Especially written for qualified nurses working in intensive care nursing units, this comprehensive text has been developed to be as accessible as possible. This fourth edition has been revised throughout to ensure the evidence base is completely up to date and the content reflects contemporary best practice.

Intensive Care Nursing is structured in user-friendly sections. The chapters contain sections outlining the "fundamental knowledge" needed to understand key chapters, "implications for practice" boxes, further reading and resources overviews, "time out" sections for revision and clinical scenarios with questions included. Reviewed throughout by experienced practitioners and teachers, it covers:

- patient-focused issues of bedside nursing;
- the technical knowledge necessary to care safely for ICU patients;
- the more common and specialised disease processes and treatments encountered;
- how nurses can use their knowledge and skills to develop their own and others' practice.

Written by a practice development nurse with a strong clinical background in intensive care nursing and experience of teaching nursing, *Intensive Care Nursing* is essential reading for nurses and health professionals working with seriously ill patients, particularly those undertaking post-registration training in the area.

Philip Woodrow is Practice Development Nurse in Critical Care at East Kent Hospitals University Foundation Trust, UK.

Intensive Care Nursing

A Framework for Practice

Fourth Edition

Philip Woodrow

Fourth edition published 2019 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

> and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2019 Philip Woodrow

The right of Philip Woodrow to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

> First edition published by Routledge 2000 Second edition published by Routledge 2006 Third Edition published by Routledge 2011

British Library Cataloguing-in-Publication Data Names: Woodrow, Philip, 1957– author. Title: Intensive care nursing : a framework for practice / Philip Woodrow. Description: Fourth edition. I Abingdon, Oxon ; New York, NY : Routledge, 2018. I Includes bibliographical references and index. Identifiers: LCCN 20180111531 ISBN 9780815385936 (hardback : alk. paper) I ISBN 9781138713802 (pbk. : alk. paper) I ISBN 9781315231174 (ebook : alk. paper) Subjects: I MESH: Critical Care Nursing-methods I Critical Illness—nursing Classification: LCC RT120.I5 I NLM WY 154 I DDC 610.73/6—dc23

LC record available at https://lccn.loc.gov/2018011153

Library of Congress Cataloging-in-Publication Data Names: Woodrow, Philip, 1957– author. Title: Intensive care nursing : a framework for practice / Philip Woodrow. Description: Fourth edition. | Abingdon, Oxon ; New York, NY : Routledge, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2018011153 | ISBN 9780815385936 (hardback : alk. paper) | ISBN 9781138713802 (pbk. : alk. paper) | ISBN 9781315231174 (ebook : alk. paper) Subjects: | MESH: Critical Care Nursing—methods | Critical Illness—nursing Classification: LCC RT120.15 | NLM WY 154 | DDC 610.73/6—dc23 LC record available at https://lccn.loc.gov/2018011153

> ISBN: 978-0-8153-8593-6 (hbk) ISBN: 978-1-138-71380-2 (pbk) ISBN: 978-1-315-23117-4 (ebk)

Typeset in Sabon and Futura by Florence Production Ltd, Stoodleigh, Devon, UK To the States or any one of them, or any city of the States, Resist much, obey little, Once unquestioning obedience, once fully enslaved, Once fully enslaved, no nation, state, city, of this earth, ever afterwards resumes its liberty.

Walt Whitman

Fashion, even in medicine.

Voltaire

Contents

List of figures List of tables Preface Acknowledgements List of abbreviations		xi xiii xv xvii xvii
Par	rt I	
	Contexts of care	1
1	Nursing perspectives	3
2	Humanism	11
3	Psychological care	18
Par	rt II	
	Fundamental	29
4	Artificial ventilation	31
5	Airway management	48
6	Sedation	59
7	Acute pain management	68
8 Thermoregulation 9 Nutrition and bowel care		79 87
9 Nutrition and bowel care 10 Mouthcare		97
		104
12	Tissue viability	110
13	Children in adult ICUs	117
14	Older patients in ICU	126
15	Infection prevention and control	133
16	Pandemic planning	143
Par	rt III	
	Monitoring	151
17	Respiratory monitoring	153

.

. . . .

.

19 20 21 22 23	Blood gas interpretation Haemodynamic monitoring Blood results ECGs and dysrhythmias Neurological monitoring	176 190 204 219 240
Par	t IV	
	Micropathologies	253
24 25 26	Cellular pathology Immunity and immunodeficiency Haemostasis	255 262 268
Par	t V	
	Respiratory	275
27 28	Acute Respiratory Distress Syndrome (ARDS) Alternative ventilation	277 284
Par	t VI	
	Cardiovascular	293
29 30 31 32 33 34 35	Acute coronary syndromes Cardiac surgery and interventions Shock Sepsis Fluid management Inotropes and vasopressors Vascular surgery	295 304 314 327 334 345 354
Par	t VII	
	Neurological	361
36 37	Central nervous system injury Peripheral neurological pathologies	363 377
Par	t VIII	
	Abdominal	383
38 39 40 41 42 43	Acute kidney injury Haemofiltration Gastrointestinal bleeds Liver failure Obstetric admissions to ICU Organ donation	385 394 402 409 418 427

.

.

Part IX

.

	Metabolic	435
45	Severe acute pancreatitis Diabetic crises Self-poisoning	437 444 450
Par	t X	

	Professional	459
47	Transferring critically ill patients	461
48	Professional perspectives	468
49	Managing the ICU	475
50	Costs of intensive care	485

Glossary	493
References	501
Index	561

Figures

5.1	ETT just above carina	49
5.2	High- and low-pressure ETT cuffs	54
5.3	Nasal cavity	55
7.1	Referred pain	71
7.2	Dermatomes	75
9.1	Krebs' (citric acid) cycle	89
10.1	Oral (buccal) cavity	98
11.1	External structure of the eye	108
17.1	Auscultation sites for breath sounds (anterior chest wall)	156
17.2	Breath waveform	157
17.3	Pressure waveform	158
17.4	Flow waveform	159
17.5	Volume waveform	159
17.6	Pressure/volume loop	160
17.7	Flow/volume loop	161
17.8	Capnograms	163
18.1	Oxygen dissociation curve	170
18.2	Carbon dioxide dissociation curve	173
19.1	Origin of acid/base imbalance	179
20.1	Arterial trace	193
20.2	Main central venous cannulation sites	194
20.3	CVP waveform	195
22.1	Normal sinus rhythm	221
22.2	Chest lead placement	222
22.3	Action potential	224
22.4	ECG leads showing aspects of heart	225
22.5	Premature atrial ectopic	229
22.6	Multifocal ventricular ectopics	230
22.7	Sinus arrhythmia	230
22.8	Supraventricular tachycardia	231
22.9	Atrial fibrillation	231
22.10	Atrial flutter	232
22.11	Nodal/junctional rhythm	233
22.12	First-degree block	233

22.13	Second-degree block (type 1)	234
22.14	Second-degree block (type 2)	234
22.15	Third-degree block	235
22.16	Bundle branch block	235
22.17	Bigeminy and trigeminy	236
22.18	Ventricular tachycardia	236
22.19	Torsades de pointes	237
22.20	Ventricular fibrillation	237
23.1	Cross-section of the cranium	242
23.2	Pressure/volume curve	242
23.3	Intracranial hypertension and tissue injury: a vicious circle	243
23.4	Glasgow Coma Scale	245
23.5	Normal ICP waveform	249
24.1	Cell structure	256
29.1	Acute coronary syndromes	296
29.2	Coronary arteries, with anterior myocardial infarction	297
31.1	Ventricular assist devices (left and right)	322
31.2	Intra-aortic balloon pump – deflated (a) and inflated (b)	322
31.3	Arterial pressure trace, showing augmented pressure from	
	use of an intra-aortic balloon pump	323
33.1	Normal distribution of body water	335
39.1	Ultrafiltration and convection	395
39.2	Convection	396
40.1	Tamponade ("Minnesota") tube	405

.

.

Tables

1.1	Levels of care	4
4.1	Commonly used abbreviations and terms	32
17.1	Sputum colour – possible causes	155
18.1	Typical partial pressures of gases at sea level	167
18.2	Some factors affecting oxygen dissociation	170
19.1	Normal ranges for arterial blood gases	183
19.2	Some abbreviations commonly found on blood gas samples	183
19.3	Main electrolyte + metabolite results measured by most	
	blood gas analysers	187
20.1	Normal cardiac output study parameters	202
21.1	Haematology normal ranges – red cells	206
21.2	Haematology normal ranges – white cells	208
21.3	Main biochemistry results	216
22.1	Framework for ECG interpretation	223
27.1	Complications of prone positioning	280
32.1	Surviving sepsis campaign bundles	330
33.1	Table for different fluids	338
34.1	Main target receptors for drugs	351
35.1	Main complications: open surgery to the aorta	358
36.1	Possible main aspects of medical management of moderate/	
	severe head injury	367
36.2	Priorities of care during fitting	370
41.1	Main liver function tests	412
44.1	Priorities of nursing care	441

Preface

This book is for ICU nurses. Intensive care is a diverse speciality, with many sub-specialities. Even within a single ICU, the range of pathologies and treatments seen may vary considerably. No text can hope to cover every possible condition readers may see, and general texts cannot cover topics comprehensively. My aim for this edition, as in the previous ones, is to offer nurses working in general ICUs an overview of the more commonly encountered pathologies and treatments. This text will probably be most useful about six to 12 months into ICU nursing careers, so assumes that readers are already qualified nurses, with experience of caring for ventilated patients, but wish to develop their knowledge and practice further. Because some knowledge is assumed, "fundamental knowledge" is listed at the start of many chapters for readers to pursue any assumed aspects of which they are unsure. "Further reading" at the end of each chapter identifies some useful, and usually relatively easily accessible, resources for readers to pursue. Definitions of some technical terms can be found in the glossary – where these terms appear in the text they are italicised, although italics are sometimes used for other reasons - for example, standard practices of italicising names of publications and microorganisms is followed.

This book focuses on nursing care of Level 3 patients. Level 2 patients are the focus of a companion volume (Woodrow, 2016). Some overlap between the two is inevitable, but where reasonably possible I have attempted to make the books complementary. Some topics relevant to Level 3 patients are included in the other text – for example, intrapleural chest drains and non-invasive ventilation. The title and terminology, "intensive care unit (ICU)", has been retained, rather than replaced with the often used "critical care unit (CCU)", largely to avoid confusion with coronary care units (also CCUs).

This fourth edition has provided the opportunity to update and develop contents; the structure remains essentially unchanged from the third edition. Much more could be covered, but a larger book would be less affordable, more unwieldy and less used. My priority in revising this book has therefore been to identify core issues within a similar-length text. Some links made to incorporate topics into chapters are tenuous, but I hope that their presence justifies this approach. Many aspects are inevitably relevant to various chapters; as most readers are likely to "dip in" to parts of this book, there is some repetition. I have also cross-referenced to chapters in both this book and Woodrow (2016). The index and glossary are also useful resources for expanding knowledge of many aspects.

The amount of evidence continues to increase, together with increased accessibility through the internet. Increased numbers of meta-analyses and systematic reviews means that some sources are more comprehensive than were generally available when developing the first edition of this book. Conversely, the quantity of dubious evidence has also proliferated. Searching literature is therefore necessarily selective, heavily reliant on guidelines, meta-analyses and publications from key organisations, as well as being influenced by serendipity. I have tended to follow UK standards and guidelines; for example, biochemistry references ranges follow the UK's Pathology Harmony. Readers outside the UK should check standards in their own country. References to statute and civil law are usually English and Welsh law, so readers in Scotland and Northern Ireland and those outside the United Kingdom should check applicability to local legal systems. Selection and interpretation from this wealth of resources is mine, and like any other selection and interpretation is inevitably subjective.

Many controversies are identified, but all aspects of knowledge and practice should be actively questioned and constantly reassessed. I have tried to minimise errors, but some are almost inevitable in a text this size; like any other source, this text should be read critically. If this book encourages further debate among practising nurses it will have achieved its main purpose. My hope remains that this book benefits readers, and so contributes to delivering quality patient care.

Philip Woodrow, 2018

Acknowledgements

Any book is inevitably a collaborative effort, and I am grateful to everyone who has contributed towards this text. Previous editions have benefitted in particular from advice of John Albarran and Jane Roe. Jane Roe also developed the scenarios used in the first edition, these have largely been retained in this edition. Reviewers and contributors towards text development include Grace McInnes (Commissioning Editor), Carolina Antunes (Editorial Assistant), Christina O'Brien (Production Editor), Josh Curtis and Richard Sanders (Project Management), Hugh Jackson (Copy-Editor), and Susan Leaper (Typesetting and Design Production).

The text has also been influenced by input from many other people, including reviewers, colleagues in the British Association of Critical Care Nurses, and East Kent Hospitals University NHS Foundation Trust – especially the staff of its three ICUs at Kent & Canterbury (Canterbury), Queen Elizabeth the Queen Mother (Margate) and William Harvey (Ashford) hospitals. I am especially grateful to the team at Routledge/Taylor & Francis for commissioning this fourth edition and supporting it throughout its development.

Abbreviations

<	less than
>	more than
2,3 DPG	2,3-diphosphoglycerate: a chemical in erythrocytes which aids
	oxygen dissociation from haemoglobin
ACS	acute coronary syndromes (see Chapter 29)
ACT	activated clotting times (normal 120-150 seconds)
AF	atrial fibrillation
AIDP	acute inflammatory demyelinating polyneuropathy
AIDS	acquired immunodeficiency syndrome
AMAN	acute motor axonal neuropathy
ANCA	antineutrophil cytoplasmic antibodies (test for renal vasculitis)
ANF	atrial natriuretic factor (also called atrial natriuretic peptide
	= ANP)
ANP	atrial natriuretic peptide (also called atrial natriuretic factor
	= ANF)
APACHE	acute physiology and chronic health evaluation
APRV	airway pressure release ventilation
ARC	AIDS-related complex
ARDS	acute respiratory distress syndrome (see Chapter 27)
ASV	adaptive support ventilation
ATP	adenosine triphosphate
AV	atrioventricular
BE	base excess
bpm	depending on context, "beats per minute" (heart rate) or "breaths
	per minute" (respiratory rate)
BSD	brainstem death
CCO	Critical Care Outreach
CABG	coronary artery bypass graft(s)
ССР	cerebral perfusion pressure
CD4, CD8	CD = cluster designation; type of surface antigen; numbers refer
	to different types
CIDP	chronic inflammatory demyelinating polyneuropathy
CK	creatine kinase
CMV	controlled mechanical ventilation or cytomegalovirus

ABBREVIATIONS

.....

COP	colloid osmotic pressure
COPD	chronic obstructive pulmonary disease
CPAP	continuous positive airway pressure
CPE	carbapenemase-producing <i>enterobacteriacae</i>
CPP	cerebral perfusion pressure
CRE	Carbapenem-resistant enterobacteriaceae
CRP	C-reactive protein (see Chapter 21)
CRRT	continuous renal replacement therapy, blanket term used to
CIXI	describe any mode
CSF	
CT	cerebrospinal fluid
	computerised tomography (scan)
cTnI	(cardiac) troponin I
cTnT	(cardiac) troponin T
CVVH	continuous veno-venous haemofiltration
CVVHDF	continuous veno-venous haemodiafiltration
Da	daltons: a unit of molecular weight
DCD	donation after circulatory death
DIC	disseminated intravascular coagulation
DKA	diabetic ketoacidosis
DSa	digital subtraction angiography
DVT	deep-vein thrombosis
E. coli	Escherichia coli, a species of gram-negative bacteria, one of
	the major gut commensals; presence of E. coli in the blood (or
	wounds) is an infection
ECCO ₂ R	extracorporeal carbon dioxide removal
ECLS	extracorporeal lung support
ECMO	extracorporeal membrane oxygenator
EfCCNa	European Federation of Critical Care Nursing Associations
eGFR	estimated glomerular filtration rate; normal > 90 ml/min/1.73m ²
ELSD	Extracorporeal liver support devices
ESBL	extended spectrum beta-lactamases: enzymes producing cross-
	resistance to many antibiotics
etCO ₂	end-tidal carbon dioxide
ETT	endotracheal tube
EVAR	endovascular aneurysm repair
FDP	fibrin degradation product
FEV	forced expiratory volume (so FEV_1 = forced expiratory volume
	at one second)
FFP	fresh frozen plasma
FiO ₂	fraction of inspired oxygen (expressed as a decimal fraction, so
2	FiO_2 1.0 = 100% or pure oxygen)
FRIII	fixed-rate intravenous insulin infusion
FVC	functional ventilatory capacity
GBS	Guillain-Barré Syndrome
GCS	Glasgow Coma Scale
GFR	see eGFR

.....

.

.

. . .

GRE	glycopeptide-resistant Enterococci (previously called VRE)
GTN	glyceryl trinitrate
HAI/HCAI	healthcare-associated infection
HAS	human albumin solution (i.e. albumin for infusion)
HbA	adult haemoglobin
HbF	foetal haemoglobin (abnormal after three months of age)
HBV	hepatitis B virus
Hct	haematocrit (also called "packed cell volume")
HCV	hepatitis C virus
HDL	high density lipoprotein
HELLP	Haemolysis elevated liver enzymes and low platelets
HHS	hyperosmolar hyperglycaemic state (= HONKS)
HITTS	heparin-induced thrombocytopenia and thrombosis syndrome
HIV	Human immunodeficiency virus (see Chapter 25)
HONKS	hyperosmolar non-ketotic state (= HHS)
HUS	haemolytic uraemic syndrome
Hz	hertz
I.C.N.	International Council of Nurses
I.C.S.	Intensive Care Society.
ICP	intracranial pressure
Ig	immunoglobulin (e.g. IgA = immunoglobulin A)
IL	interleukin
iLA	interventional lung assist
INR	international normalised ratio (measures clotting time - see
	Chapter 21)
iu	international units
IVI	intravenous infusion
IVIG	intravenous immunoglobulin
kDa	kiloDaltons (molecular weight), = 1000 daltons (Da)
kJ	kilojoule
LBBB	left bundle branch block
LDL	low density lipoprotein
LMW	low molecular weight (when prefixed to heparin)
MDMA	3-4 methylenedioxymethamphetamine (ecstasy)
MetHb	methaemoglobin
MIDCAB	minimally invasive direct coronary artery bypass grafting
mmol	millimole
MODS	multi-organ dysfunction syndrome
MRI	magnetic resonance imaging
MRSa	meticillin-resistant Staphylococcus aureus, also called multi-
	resistant Staphylococcus aureus; originally spelled "methicillin"
NAFLD	non-alcoholic fatty liver disease
NASH	non-alcoholic steatohepatitis
NIRS	near infrared spectroscopy
NIV	non-invasive ventilation
NPi	neurological pupil index

ABBREVIATIONS

.

NICAID	
NSAID	non-steroidal anti-inflammatory drug
NSTEMI	non-ST elevation myocardial infarction
O ₂ Hb	fraction of total haemoglobin combined with oxygen
OPCAB	off-pump coronary artery bypass
PaCO ₂	arterial carbon dioxide (from blood gas)
PaO ₂	partial pressure of arterial oxygen
PAV	proportional assist ventilation
PCI	percutaneous coronary intervention
PCP	Pneumocystis carinii pneumonia (now retitled Pneumocystis
	<i>jirovici</i> pneumonia)
PCV	packed cell volume (also called "haematocrit")
PDIs	phosphodiesterase inhibitors
PE	pulmonary embolus
PEA	pulseless electrical activity
PEEP	positive end expiratory pressure
PERTL	pupils equal (and) react to light
PFC	perfluorocarbon
PGI ₂	prostaglandin I ₂ (also called "prostacyclin")
PJP	Pneumocystis jirovici pneumonia
pPCI	primary percutaneous coronary interventions
PPE	personal protective equipment
PPI	proton pump inhibitors
PS	pressure support
PSV	pressure support ventilation
PTT	prothrombin time
PUFAs	polyunsaturated fatty acids
QALYs	quality adjusted life years
QTc	QT interval corrected to what it would be if heart rate were
-	60 bpm
RBBB	right bundle branch block
RCT	randomised controlled trial
RNA	ribonucleic acid
ROS	reactive oxygen species (see oxygen radicals)
RR	respiratory rate
SA	sinoatrial (node)
SBE	standardised base excess
SD plasma	solvent detergent plasma
SDD	selective digestive decontamination
SIADH	syndrome of inappropriate antidiuretic hormone
SIMV	synchronised intermittent mandatory ventilation
SjO ₂	jugular venous bulb saturation
SOD	selective oral decontamination
STEMI	ST elevation myocardial infarction
StO ₂	saturation of tissues (venous blood) by oxygen
SV	stroke volume
SVT	supraventricular tachycardia
	1

ABBREVIATIONS

.

TBI	traumatic brain injury
TIA	transient ischaemic attack
Tn	troponin
TNF	tumour necrosis factor
TNFα	tumour necrosis factor alpha
t-PA	tissue plasminogen activator, also called recombinant tissue
	plasminogen activator (rt-PA)
TTP	thrombotic thrombocytopenia purpura
TV	tidal volume (also written at V_t)
UA	unstable angina
V/Q	(alveolar) ventilation to (pulmonary capillary) perfusion ratio;
-	minute volume compared with cardiac output. Normal V/Q
	= 0.8
VALI	ventilator-associated lung injury (see VILI)
VAP	ventilator-associated pneumonia
VILI	ventilator-induced lung injury (see VALI)
VRE	vancomycin-resistant Enterococci (former name for GRE)
V _r	tidal volume (also written at TV)
VT	ventricular tachycardia
W/m^2	watts per square metre
WBC	white blood cells (in this text called "white cell count")
WCC	white cell count (see Chapter 21)
WCC	white cell could (see Chapter 21)

.

. .

Contexts of care

Nursing perspectives

Contents

Introduction	4
Technology	5
The patient	5
Their relatives	5
And the nurse	7
Stress	8
Duty of care	8
Implications for practice	9
Summary	9
Further reading	10
Clinical questions	10

Introduction

This book is about nursing care of critically ill (Level 3 – see Table 1.1) patients; a companion book (Woodrow, 2016) focuses on Level 2 patients.

The 60 years of intensive care units (ICUs) have seen various technologies, drugs and protocols developed to treat problems of critical illness. While many have found a valid niche, initial hopes have often been largely disappointed. What has been constant is the contribution of nurses and nursing to outcomes for critically ill patients. So what is the purpose of nurses in ICU? What does critical illness, and admission to intensive care, cost patients and their families? In the busyness of everyday practice, these fundamental questions can be too easily forgotten. Nursing is expensive, costing more than one quarter of acute trust budgets, and although ICU staffing costs vary, high nurse:patient ratios necessitate the need for ICU nursing practice; this section establishes core fundamental aspects of ICU nursing. To help readers articulate the importance of their role, this first chapter explores what nursing means in the context of intensive care, while Chapter 2 outlines two schools of psychology (Behaviourism and Humanism) that have influenced healthcare and society.

A recurring theme of pathologies described are two responses:

inflammation

stress

These are innate defensive/protective responses. Balanced responses (appropriate to the threat) often help resolve non-critical illness. Critical illness typically occurs with imbalanced responses – insufficient response means disease can cause death, while excessive responses themselves become pathological.

Table 1.1 Levels of care

Level O	Patients whose needs can be met through normal ward care in an acute hospital.
Level 1	Patients at risk of their condition deteriorating, or those recently relocated from higher levels of care, whose needs can be met on an acute ward with additional advice and support from the critical care team.
Level 2	Patients requiring more detailed observation or intervention including support for a single failing organ system or post-operative care and those "stepping down" from higher levels of care.
Level 3	Patients requiring advanced respiratory support alone or basic respiratory support together with support of at least two organ systems. This level includes all complex patients requiring support for multi-organ failure.

Source: D.O.H., 2000a; I.C.S., 2015

Technology

Intensive care is a young speciality. Ibsen is widely credited with creating the first "modern" ICU in 1953 (Reisner-Senelar, 2011). The first purpose-built intensive care unit (ICU) in the UK opened in 1964 (Ashworth, personal communication). ICUs offer potentially life-saving intervention during acute physiological crises, with emphasis on medical need and availability of technology.

Technology facilitates monitoring and treatment but can also be dehumanising (Almerud *et al.*, 2007). Patients, not machines, should remain the focus of care (Bagherian *et al.*, 2017). Nurses should ensure that the use of technology is compatible with the safety, dignity and rights of people (I.C.N., 2012). ICU patients, often disempowered by their disease and drugs, are confronted with environments designed for medical and technical support which can create barriers for patients and their care (Eriksson *et al.*, 2010), so advocacy remains a fundamental nursing role (Williams *et al.*, 2016). Nurses should develop therapeutic and Humanistic environments which help the patient as a whole person towards their recovery (Almerud *et al.*, 2007). For patients, caring behaviour and relieving their fear and worries are the most valuable aspects of nursing (Hofhuis *et al.*, 2008a).

The patient ...

Patients are admitted to intensive care because potentially reversible physiological crises threaten one or more body systems, and life (Crunden, 2010). Care therefore needs to focus primarily on supporting failed systems. This book discusses various aspects of technological and physiological care, many chapters focusing on specific systems and treatments. But these aspects should be placed in the context of the whole person. People are influenced by, and interact with, their environment. Extrinsic needs for:

dignity

privacy

psychological support

spiritual support

define each person as a unique individual, rather than just a biologically functioning organism.

Uniquely among healthcare workers, nurses are with the patient throughout their hospital stay. A fundamental role of nurses is to be with and be for the patient, as a whole person (McGrath, 2008). Person-centred care is widely cited in strategic documents, policy statements and organisational values, but its evaluation tends to be narrow and reductionist (Manley and McCormac, 2008).

.... Their relatives

Relatives are an important part of each person's life (Wong *et al.*, 2015), giving patients courage to struggle for survival (Bergbom and Askwall, 2000).

So, caring for relatives is an important part of patient care (Davidson *et al.*, 2017). Of all staff, nurses are best placed to meet relatives' needs, and are a valuable source for updating relatives about progress (Iverson *et al.*, 2014; Wong *et al.*, 2015).

In contrast to the often-high-tech focus of staff, families of intensive care patients often focus on fundamental aspects of physiological needs, such as pain relief and communication (Tingle, 2007). Rather than ruminate by bedsides, afraid to touch their loved ones in case they interfere with some machine, relatives should be offered opportunities to be actively involved in care (Davidson *et al.*, 2017).

Physiological crises for patients often create psychological crises for their relatives (Wong *et al.*, 2015). Holistic patient care should include caring for their families (Bagherian *et al.*, 2017).

Relatives experience a range of emotions, including anxiety, anger and frustration (Turner-Cobb *et al.*, 2016). They are usually angry at the disease, but it is difficult to take anger out on a disease. Instead, anger, complaints or passive withdrawal may be directed at those nearby, who are usually nurses (Maunder, 1997). Relatives may blame themselves, however illogically, for their loved one's illness. They place low priorities on their own physical and physiological needs, such as rest and food (Padilla, 2014). Facilities for relatives should include a waiting room near the unit, somewhere to stay overnight and facilities to make refreshments (NHS Estates, 2003; B.A.C.C.N., 2012).

Relatives need information, both to cope with their own psychological crisis and to make decisions (Padilla, 2014; Gaeeni *et al.*, 2015). Relatives, and patients, may seek information from the internet, often immediately available through mobile telephones and tablets. While many internet resources are reliable, some are not and can be a source for misinformation and confusion. Nurses should therefore clarify relatives' understanding of pathological conditions, treatments and other aspects.

Relatives often have a psychological need for hope (Bagherian et al., 2017), but with nearly one fifth of patients dying on the unit (Vincent et al., 2009), and additional post-discharge mortality and morbidity, there may be little hope to offer. If death seems likely, relatives need to know so they can start grieving (Wright, 2007). Relatives often anticipate more positive outcomes than physicians (Lee Char et al., 2010), so may be unconvinced when bad news is broken. Changes in critical illness may be rapid and unpredictable. Where possible, both the nurse caring for the patient and a senior doctor should inform the family of anticipated outcomes, away from the patient's bedside, preferably in a room where discussion will not be interrupted by others. The door should be closed for privacy, but access to doors should not be obstructed in case distressed relatives need to escape. Everyone should sit down, as family members may faint, and staff should not stand above relatives. Posture, manner and voice should be as open as possible. Tissues should be available. Having witnesses is useful in case relatives later complain. Detailed records of discussions should be recorded.

NURSING PERSPECTIVES

Relatives should be given time to think about information, express their emotions and ask anything they wish, and be offered opportunities for further discussions if they wish. An information book, including details of who to contact and support groups (such as CRUSE), is useful. Further discussion about end-of-life care can be found in Woodrow (2016).

... And the nurse

Nurses monitor and assess patients. But nurses also provide care. Assessment is fundamental to providing care, but excessive paperwork can hinder care. Nursing assessments should therefore remain patient-focused, enabling nurses and others to deliver effective care. Proliferation of policies, protocols and competencies is often intended to ensure quality and parity of care wherever patients are admitted and whoever cares for them. But each patient is an individual and needs individualised nursing care. While guidance and safeguards can be useful, increasing protocols does not correlate with either compliance or reducing patient mortality (Sevransky *et al.*, 2015). Rather than introduce more proformas, nurses need to maintain and develop knowledge and skills to be able to adapt care to individualised patient needs.

Nurses should collaborate with other professions (N.M.C., 2015). Nurseto-patient ratios for Level 3 patients should be 1:1 (I.C.S., 2015). The UK faces specific challenges: UK ICU patients are sicker than in most countries (Mandelstam, 2007), there are fewer ICU beds per 100,000 population (Adhikari *et al.*, 2010) than in other developed, and many Third World, countries. There is also disparity between the four UK countries: I.C.S. (2015) cite England as having seven beds per 100,000 population, compared with 3.2 in Wales and Scotland and 4.7 in Northern Ireland. For Level 2 patients, nurse:patient ratios should be 1:2 (I.C.S. 2015). These levels may reflect acuity of disease but often fail to reflect nursing workload: a conscious but delirious Level 2 patient often requires more nursing time than a fully sedated Level 3 patient. Decreasing staffing levels increase complication rates (EfCCNa, 2007) and mortality (Cho *et al.*, 2008; West *et al.*, 2009).

Nurses, and nursing, have valuable roles within intensive care. But staff are an expensive commodity. Even if economic pressures are ignored, the global shortage of nurses and ageing workforce (Crisp and Chen, 2014) limit supply. A pragmatic solution to both economic and recruitment limitations has been to develop support worker roles. Most units employing support workers have found they provide valuable contributions to teamwork. B.A.C.C.N. guidelines should protect patients, nurses and support workers from inappropriate delegation (Bray *et al.*, 2009).

Deterioration of acutely ill patients, and need for ICU admission, is often preventable (Hogan *et al.*, 2012; NHS Improvement, 2016). Comprehensive Critical Care (D.O.H. 2000a) recommended that acute hospitals should have a Critical Care Outreach service to prevent the avoidable deterioration of ward patients, and to facilitate their timely admission if ICU is needed. They also follow up on ICU patients after discharge back to wards, and sometimes post-hospital discharge through "ICU clinics". CCO forms an important part of the ICU team, and concerns during discharge to wards should be escalated to them.

Stress

Stress is frequently experienced by patients in ICU (Samuelson *et al.*, 2007), but it can also be a problem for relatives and staff. For staff, stress can lead to burnout, potentially causing staff to change careers and suffer mental ill health. Moss *et al.* (2016) suggest that burnout is especially common in staff caring for critically ill patients, although arguably stressors of nursing in other areas, while different, are potentially greater.

Stress is both a psychological and physiological phenomenon; psychology and physiology interact. Critically ill patients suffer physiological stress from their illness, and psychological stress from negative emotions, such as fear. Stress responses are defensive, activating the hypothalamic–pituitary–adrenal (HPA) axis (Chrousos, 2009; Steptoe and Kivimäki, 2012). The pituitary gland responds by releasing adrenocorticotrophic hormone (ACTH), which stimulates adrenal gland production of adrenaline (epinephrine) and noradrenaline (norepinephrine), with increased production of other hormones, including cortisol. This "fight or flight" response, discussed further in Chapter 31, increases:

- heart rate
- stroke volume
- systemic vascular resistance
- respiration rate
- blood sugar
- thrombolysis
- fluid retention.

While protective for healthy people facing acutely life-threatening confrontation, all factors are frequently detrimental with critical illness. Caring for both physical and psychological needs, nurses can add a humane, holistic perspective into patient care, transcending an often-hostile environment (McGrath, 2008).

Duty of care

Nurses' primary duty of care should be to their patients. This includes a duty to maintain confidentiality (N.M.C., 2015). If patients are unable to express their wishes, and what information they wish shared with others, nurses should be cautious about sharing information even with close relatives and friends. Usually, if patients are unconscious, information will be given to the identified next of kin, who will usually be asked to liaise with other family and friends. Next of kin may identify a password to enable information to be shared